
A Component Framework Supporting Peer Services for
Space Data Management

Daniel Crichton
Jet Propulsion Laboratory

4800 Oak Grove Dr 171-264
Pasadena, CA 91109

Dan.Crichton@jpl.nasa.gov

Steve Hughes
Jet Propulsion Laboratory

4800 Oak Grove Dr 171-264
Pasadena, CA 91109

Steven.Hughes@jpl.nasa.gov

Sean Kelly
Independent Consultant

1672 Hope Dr #1817
Santa Clara, CA 95054

Sean.Kelly@jpl.nasa.gov

Paul Ramirez
Jet Propulsion Laboratory

4800 Oak Grove Dr 171-264
Pasadena, CA 91109

Paul.Ramirez@jpl.nasa.gov

Abstract—Knowledge discovery and data correlation
require a unified approach to basic data management.
However, achieving such an approach is nearly impossible
with hundreds of disparate data sources, legacy systems and
data formats. This problem is pervasive in the space science
community where data models, taxonomies and data
management systems are locally implemented and limited
metadata has been collected and organized. Technology
developed by the Object Oriented Data Technology
(OODT) task at NASA's Jet Propulsion Laboratory (JPL)
has been exploring component frameworks for managing,
locating and exchanging data residing within a
geographically distributed network. OODT has taken a
novel approach towards solving this problem by exploiting
web technologie s usually dedicated to e -commerce,
combined with a rich, metadata-based environment. The
components developed by OODT create a set of distributed
peer-to-peer services that allow for data managed by a peer
to be searched and returned as part of an integrated data
management system. This paper discusses the approach
taken to develop a software framework, and two prototype
development efforts for the Planetary Data System (PDS)
and the Mission and Ground Asset Database.1

TABLE OF CONTENTS

1. INTRODUCTION
2. HISTORY AND PROGRAMMATIC GOALS
3. PEER SERVICES ARCHITECTURE
4. INFORMATION ARCHITECTURE
5. APPLICATION TO THE PLANETARY DATA SYSTEM
6. APPLICATION TO THE DEEP SPACE NETWORK
7. FUTURE
8. REFERENCES
9. ABOUT THE AUTHORS

1. INTRODUCTION

The Object Oriented Data Technology (OODT) task,
supported by the National Aeronautics and Space
Administration (NASA) and implemented at the Jet
Propulsion Laboratory (JPL), is focusing on developing a
reference framework to support cross disciplinary solutions
for data access, exchange and distribution of distributed data

1 0-7803-7231-X/01/$10.00/© 2002 IEEE

to increase the collaboration and correlation of key
engineering and science data produced throughout the
lifecycle of a space mission. NASA is ambitiously planning
to fly several new missions with an increasing amount of
data planned for each mission. Unfortunately, the data
collected from cradle to grave of these missions tends to be
difficult to locate, access, understand and use limiting
interoperability, software and data reuse, knowledge
discovery and increasing mission costs. As a result, OODT
identified several key goals including (1) understanding
where the data resources reside, (2) understanding how data
is accessed in each system, (3) understanding the underlying
data models for each system, and (4) building ubiquitous
interfaces across multiple data systems that demonstrate
interoperability using a common query mechanism. In
order to meet these challenging goals we defined an
architecture and a set of requirements. The architecture
defined a framework, services, and a reference information
model that was tested against several projects including the
Planetary Data System (PDS) and the Deep Space Network
(DSN). We based requirements on experience from these
activities as well as interactions with several other efforts
which support the overall objectives and culture of JPL and
NASA. The partnerships established by the OODT team to
research solutions proved to be critical to meeting our goals,
and allowed us to identify key data architectures that
support the management and exchange of data in an era of
ever-increasing disparate data sources.

2. HISTORY AND PROGRAMMATIC GOALS

In February 1998, JPL was funded by the Office of Space
Science at NASA to perform research in object oriented and
distributed data management technologies. A principal goal
of the OODT task is to explore and develop cutting-edge
systems for the interoperability of scientific research,
measurements, and data that span multiple disciplines.
Given the amount of data generated by past unmanned deep
space missions, and the predicted quantity of data that is
planned for future missions, key information technology
solutions need to be created that will enable the archiving
and distribution of science data products residing in multiple
data systems. As a result, the focus of OODT has been to
provide an architectural framework that includes software
services for data archiving, data distribution, data location
and data exchange. The ability to correlate data across
multiple missions, databases and data sets is dependent on
having the data management infrastructure to allow the

exchange of data. Advances in technologies including the
Extensible Markup Lang uage (XML) [1], metadata
management, and distributed computing have allowed such
an infrastructure to be a reality.

Presently, space scientists cannot easily locate or use data
across the hundreds of autonomous, heterogeneous and
distributed data systems within the space science
community. The various platforms, data formats, data
interpretations and Database Management Systems (DBMS)
used make interoperability a difficult task. Developing a
ubiquitous computing environment across data systems is a
difficult challenge given the independence of work groups
and research activities at NASA. Therefore, the architecture
that we have defined allows each data system to be
independently developed, however, the systems exchange
data gi ven a messaging infrastructure that includes
metadata2 descriptions associated with the messages. The
architecture is based on a directed graph (or digraph) of data
systems that are traversed using a common query message
implemented in XML in order to satisfy a query. Profiles—
sets of resource definitions —describe nodes (or data
systems) that are part of the digraph. Profiles may point to
other profiles thus representing arcs of the digraph. A
profile is essentially a metadata description of the resources
known at a node in the distributed framework. These
resources can be definitions of data systems, or data
products managed by a data system. Both the service and
information architecture will be defined in more detail later
in the paper.

As systems become more distributed, the need to integrate
dissimilar systems increases. A simple calculation yields
that an organization with N number of systems could
potentially identify the need to create (N2-N)/2 interfaces in
order to share data between all of th ose systems. As a
result, the need to identify and support standards based
interfaces increases as the number of distributed nodes in an
organization increases. One of the emerging solutions is
peer-to-peer (P2P) architectures. A P2P architecture is
defined as “environment consist[ing] of computers with
equal capabilities that share resources (such as processing
power and memory), communicate exclusively with each
other and do not connect to servers or central databases” [2].
One of the key goals of OODT has been to provide the
ability for data systems to become peers that provide
services. These services could distribute information such
as science data, engineering data, navigation data or even
contain computational capabi lities such as science
processing algorithms or simulation environments. The
Internet has spawned several such capabilities including
Napster for sharing music files. It is important to note that
while it is generally accepted that federating together data
systems will increase the knowledge generated by
correlating data captured in dispersed space science

2 Metadata is data about data.

databases, it is still unclear as to what the return on
investment will yield. Several initiatives at NASA are
exploring that in addition to OODT including the National
Virtual Observatory (NVO) which is attempting to build a
federated environment for collaboration and research that
integrates astrophysics and astronomy databases across the
science community with a goal to “enable new science,
more effective science, and more cost effective science” [3].
As a result, one of the activities outlined by NVO is to
“[establish] a common systems approach to data pipelining,
archiving, and retrieval that will ensure easy access by a
large and diverse community of users and that will minimize
costs and times to completion.” [3] As these efforts
continue one goal is clear: the need to have a generic,
adaptable, scalable and extensible architecture with well
defined interfaces that implement standards based protocols
and a rich metadata infrastructure is an important key to
unlocking interoperability across NASA.

3. PEER SERVICES ARCHITECTURE

OODT consists of a set of cooperating, distributed peer
components. Although its current incarnation is
implemented with a client-server communications substrate,
the design resembles a P2P network, and we have plans to
transition the communications substrate to a P2P
implementation shortly [4].

Distributed Framework

OODT is a distributed system, wherein components may be
geographically dispersed. A standard Internet TCP/IP
connection suffices to provide connectivity between
components at this time. In addition, we’ve architected the
software as a plug-in system [5]. Rather than make OODT
a set of utility APIs out of which each site develops its own
applications, we create a set of classes and interfaces that
sites customize and implement and then register with the
OODT API. Frameworks are easier to use because the
framework classes and interfaces tell the developer exactly
what needs to be implemented. More work necessarily falls
upon the framework developers.

Within OODT there are three major components:

§ Profile servers serve scientific metadata and can tell
whether a particular resource can provide an answer to a
query.

§ Product servers serve data products in a system -
independent format when presented with a product
request.

§ Query servers accept profile and product queries and
traverse the network of profile and product servers,
collecting results.

The query server is the main entry point into the system,
with Application Programmer’s Interface (API) for

developers and a web interface for end users and testing. In
addition to these three servers, an archive server provides a
metadata-capable data storage system for any kind of
product that can be represented as a sequence of bytes (such
as a file).

Common Design Elements

Profile and product servers, in addition to being distributed
peer components, exhibit some common design elements.
First, they all advertise a remotely accessible interface,
callable via CORBA [6]. While clients may contact a
profile or product server directly, we encourage them to use
the query service which simulates the gateway to the P2P
space. Figure 1, a UML [7] deployment diagram,
demonstrates a sample deployment of the OODT software.
In that diagram, the query server has network connections to
two profile and two product servers.

 Query+
Root

Prof Svr

Database

Filesystem

Document
Repository

Data
Profile

Svr

Image
Prod Svr

Doc
Profile

Svr

Table
Prod Svr

Figure 1 - Sample OODT Deployment

Also, profile and product servers have run-time specified,
replaceable backend processors. A profile server may get
its metadata from a flat file or a database by changing the
backend. Similarly, a product server may retrieve an image
from the filesystem or from an image storage device with a
customized backend. Backend interfaces mandate the
calling conventions for profile and product servers. We
achieve this run -time configuration through Java’s [8]
interface and dynamic loading mechanisms; core product
and profile servers refer only to abstract backend interfaces,
while specific named classes implement those interfaces.

Finally, profile and product servers all manipulate the same
query structure. This structure exists as an XML Document
Type Definition and as a Java class, and it encapsulates the
user’s query plus any results retrieved so far.

Profile Server

The profile server’s job is to serve profiles [9], which are
XML -representable metadata descriptions of resources. A
resource in this context may be a single data granule, a
dataset (a collection of granules), a collection of datasets, a

data dictionary, anything with a Uniform Resource
Identifier (URI) [10], such as a URL, or other profiles in
other profile servers. A profile “profiles” a resource b y
describing data elements it contains, what data dictionary
defines those elements, who created it, when, in what
language, under what subject headings, and so forth.
Section 4 describes the profile information model
completely.

Responsibilities—The primary responsibility of a profile
server is to accept a query and determine if any of the
profiles it manages profile resources that could satisfy that
query. Each profile server accepts the query and delegates
to a backend implementation to search the set of managed
profiles and return any that match. Figure 2 depicts the
class architecture in a UML diagram.

CORBA
Profile Svr

Profile Svr
«interface»

Backend
Impl

delegates

Figure 2 - Profile Service Class Architecture

Although users can contact a specific profile server directly
through its CORBA interface, they typically use the query
service instead. We bootstrap the query server with a “root”
profile server whose set of managed profiles refer to other
profile servers. Those other profile servers may in turn refer
to yet more profile servers, forming a directed acyclic graph
of servers. The query server can crawl this graph
(eliminating redundant cyclic queries) and gather results
from the entire network. In Figure 1, the query server runs
both the query server and the root profile server; the root
profile server contains two profiles that refer to the
document profile server and the data profile server. The
document profile server describes URLs in the document
repository, and the data profile server describes the image
and table product servers.

Besides searching a set of profiles, each profile server has
secondary responsibilities to manage its set of profiles. The
management interface includes typical set operations such
as adding, modifying, and deleting profiles.

Current Backends—The profile server’s plug-in architecture
has enabled us to design and experiment with several
backend implementations for querying and managing
profiles. Because profiles can be represented in XML, our
original implementation would store each profile in memory
as an XML Document Object Model (DOM) tree, and
search by traversing the tree.

Another implementation uses an Oracle relational database,
essentially transforming the DOM tree into a series of

database tables. This backend transforms the user’s query
into SQL and uses a stored procedure to retrieve matching
profiles in XML format.

Highly specific applications of profiles are possible, too. At
JPL, Xerox’s DocuShare [11] product manages large
collections of documentation. A profile server backend that
uses DocuShare’s WebDAV-like interface [12] enables a
single query to span multiple DocuSh are and other
documentation management systems, enhancing knowledge
sharing. In this backend, profiles of resources are built on-
the-fly by assembling information from the documentation
management system.

Product Server

Product servers exist to provide an interface to retrieving
specific scientific data products. Like profile servers,
product servers accept the query structure mentioned earlier
and described in Section 4. Instead of adding profiles to the
results section of the query structure, they add actual data
products. Data products in this sense may be individual
granules, datasets, or collections of datasets, depending on
the backend implementation to which the product server
delegates its query requests.

As with profile servers, product servers delegate requests for
products to a specific backend implementation. The
backend’s job is to act as the translator between a system-
dependent product storage system and the system -
independent OODT framework. It accepts a quer y,
transforms it into a format required by the product storage
system, retrieves the product, transforms it into a system-
independent format, and adds it to the query structure.
Figure 3 shows the class architecture.

CORBA
Product Svr

QryHandler
«interface»

Backend
Impl

delegates

Figure 3 - Product Service Class Architecture

The query handler interface for product servers is far
simpler than the profile server interface for profile servers.
There is a single method that the backend must implement
that accepts the generic query structure and returns it with or
without matching products installed.

Typical Operation—Users usually won’t know ahead of
time what product servers exists and by what network
names they’re known. Likewise, the query server does not
know what product servers are available either —it’s
bootstrapped with only a single profile server, the “root”
profile server. Some profile servers in the network must

contain matching profiles that describe product servers that
can answer a request for data.

As a result, querying is a two step process, depicted in the
UML interaction diagram in Figure 4. First, the user issues
a profile query for the desired data. The query service
crawls through the network of profile servers and returns
any matching profiles. The user then selects a product
server from the matching set and reissues the query as a
product query directed at a specific server. The query
service contacts the product server, which retrieves the
product.

Query Root
Profile

Data
Profile

Prod
Svr

Figure 4 - Retrieving a Product

Product Formats—As mentioned, one of the responsibilities
of the backend query handler for a product server is to
translate products from system-dependent to a syste m-
independent format. These system-independent formats are
any that can be encoded with an Internet MIME type [13].
The query structure’s results section includes the MIME
type of the product. For example, a product server t hat
retrieves images from a database in a proprietary format
may choose to return them in either the image/jpeg or
image/png MIME formats. A tabular product might be in
the text/tab-separated-values format.

The OODT framework provides an automated mechanism
to encoded the product itself based on the MIME type.
Because the query structure is serialized into XML between
peer components, the framework encodes certain MIME
types to be compatible with XML’s string representation.
For example, the framework encodes a text/tab-separated-
values product into an XML CDATA section. It encodes
binary products like image/gif or application/ms-word into
the base-64 textual format [13].

Users have some control over what format product servers
return products to them. Part of the query structure includes
a list of acceptable MIME types. By default, this list is */*,
meaning any product format is acceptable. By setting this to
a list of preferred MIME types, product servers learn of the
users’ desires and may encode products appropriately. For
example, setting the list to image/jpeg and image/* means

the user prefers images in JPEG format but will accept any
image format if necessary. Setting it to image/jpeg alone
means only JPEG format images are acceptable. When a
product server cannot satisfy a user’s format request, it may
return no product even if it otherwise had a match for the
query.

Query Server

A query server provides the point of entry into the OODT
framework. The query server contains the algorithms
necessary to transform the physical client/server CORBA
model into the logical P2P model for executing queries and
gathering results. It also provides a simplified interface for
users: they don’t need to know what profile or produ ct
servers exist and what their object addresses are—they only
need to access the query server.

Users can access the query server in a variety of ways
depending on their sophistication and implementation
language. CORBA-capable users can access the query
server’s CORBA interface directly and call methods to
search for profiles or products. Java users may use an API
class that encapsulates the CORBA communication. Users
of other languages may use two different HTTP [14]
interfaces, built using Java Servlets and servlet-capable web
servers [15].

One HTTP interface is completely generic: it provides the
profile and product search capabilities of the query server
through an HTTP GET or POST request. The user contacts
the query URL, passing the XML query structure and other
parameters, and receiving the XML query structure back,
possibly with encoded results. This interface requires that
the client be capable of processing XML documents (and
base-64 e ncoded data for binary products) in order to
retrieve results from the query structure.

The second HTTP interface provides simplified product
searches only and requires no XML processing capability on
the client side. The user again uses an HTTP GET or POST
request, passing a query string and receives back a single
product in its system-independent MIME type.

4. INFORMATION ARCHITECTURE

Space science instruments and experiments generate science
data products that are archived in science data systems.
Effective search and retrieval of data products within and
across these data systems depend crucially on information
architectures that are organized on principles known to the
prospective users and designed to reflect relevant
relationships. Well-designed information architectures also
enable data browsing, data mining, and correlative science.

Unfortunately, most science data systems were developed
using differing organizational principles resulting in
heterogeneous information architectures. This makes the
search and retrieval of data products across these systems

difficult since users are required to connect to each
individual data system and deal with dissimilar and often
unfamiliar organizing principles.

Metadata organization and management is a key information
architectural concept. Metadata engineering also provides
key organizational principles and includes data modeling,
data element definition, and data resource description. Since
metadata has also been identified as key to enabling
interoperability between heterogeneous data system, the
OODT information architecture includes a reference model
for describing metadata.

A key feature of the OODT information architecture is the
use of commonly accepted standards. We use the ISO/IEC
11179 [18] specification for the definition of data elements
in the data element registry. ISO/IEC 11179 is a framework
for the specification and standardization of data elements
and is widely accepted, providing the underlying basis for
data element definition and classification. The specification
defines four data element attribute categories: identification,
definitional, representational, and administrative. In
addition, we’ve adopted use of the Dublin Core [17]
element set, a content description model that has received
wide-spread acceptance across the electronic information
community. These elements were designed to facilitate the
discovery of electronic resources across the Internet and
include content, property, and instantiation resource
attributes.

We’ve also adopted the concept of the Object Identifier
(OID) to provide persistent, unique, and simple object
identification [18]. Defined by the International
Telecommunications Union and adopted by Internet SNMP
and LDAP communities, an OID is persistent once assigned
and its lifetime is infinite. OIDs are unique because they
follow a distributed management model like the Internet
Domain Name System, and are simple because they are a
series of short integers. It’s also possible to trace any level
of an OID back to its owner.

An OODT information architectural principle suggests three
phases in the development of metadata for the purpose of
enabling heterogeneous data system interoperability. The
first phase is simply the identification of individual data
system data dictionaries. Data dictionaries describe the
elements and associated values used to describe the
information or data model associated with a data system.

The second phase of development involves the transforming
of the data dictionary’s native representation into a standard
representation based on the ISO/IEC 11179 specification.
This standard representation is used to describe each data
element identified in the dictionary. The following XML
fragment illustrates the use of XML to define a space
science data element.

<?xml�version="1.0"?>�
<schema>�

...�
� <dataElement>�
� � <name>TARGET_NAME</name>�
� � <identifier>1.3.6.1.4.1.1306.2.10.997�
� � </identifer>�
� � <version>2001</version>�
� � <registrationAuthority>NASA.PDS�
� � </registrationAuthority>�
� � <context>Metadata.DataDictionary.Element�
� � </context>�
� � <definition>Identifies�a�target,�which�may�be�
� � � a�planet,�satellite,�ring,�region,�feature,�
� � � asteroid�or�comet.��See�TARGET_TYPE.�
� � </definition>�
� � <dataType>CHARACTER</dataType>�
� � <format>N/A</format>�
� � <unit>none</unit>�
� � <maxSize>30</maxSize>�
� � <obligation>Mandatory</obligation>�
� � <maxOccurrence>1</maxOccurrence>�
� </dataElement>�
...�
</schema>�

The third phase of metadata development inv olves the
manual analysis and comparison of data elements both
within and across domains to identify or derive Common
Data Elements (CDEs). This typically involves identifying
similar element names or definitions, determining core
concepts, possibly gener alizing the concept, and
determining key names and aliases. The resultant
discipline, application, or enterprise specific CDEs enable
higher levels of data system interoperability once adopted
by individual data systems.

The OODT profile server described in Section 3 manages
metadata descriptions of resources across and within
distributed data systems. The metadata descriptions are
created from and validated against the metadata registry and
are packaged as “profiles.” As mentioned before, resources
can be almost anything including subsystems, services, data
volumes, data collections, or data items. Examples of space
science data items include images, spectra, and documents.

The OODT profile is an XML document that uses domain
metadata to describe the data resources that exist within a
data system. Profiles promote interoperability between data
systems by providing a common structure and interchange
language within which to describe system resources. The
primary purpose of an OODT profile is to provide a
resource description that is sufficient for a query manager to
determine if the resource can resolve a query. This
subsequently limits the number of resources that will have
to consider the query. For example, within space sciences, a
query for images of Jupiter should not have to be handled by
the resource that maintains the Mars Global Surveyor
images of Mars. A profile can be defined as a proper subset
of the metadata that describes a resource and which is

sufficient to determine whether the resource could resolve a
query.

In addition to using XML as the interpeer exchange format,
we also use XML as the common language for the OODT
profiles. The advantages of XML include (1) superior
expressiveness to HTML by allowing information-structure
specifications, (2) simplicity compared to SGML in use and
syntax, (3) wide acceptance as an Electronic Data
Interchange (EDI) standard, and (4) the most compelling, its
flexibility. The flexibility of XML allowed us to develop a
generic structure for managing resource descriptions from
any science domain.

The Document Type Definition (DTD) specification listed
below illustrates the basic components of the resource
profile. The DTD specification has three parts: the profile
attributes, resource attributes, and the profile elements.
We’re using a DTD specification since the technology is
widely supported. We are considering XML-Schema since
it is now a recommendation of the World Wide Web
Consortium (W3C).

<!ELEMENT�profiles�(profile*)>�
<!ELEMENT�profile�(profAttributes,�resAttributes,�
� profElement*)>�
<!ELEMENT�profAttributes�(profId,�profVersion?,�
� profType,�profStatusId,�profSecurityType?,�
� profParentId?,�profChildId*,�profRegAuthority?,�
� profRevisionNote*,�profDataDictId?)>�
<!ELEMENT�resAttributes�(Identifier,�Title?,�
� Format*,�Description?,�Creator*,�Subject*,�
� Publisher*,�Contributor*,�Date*,�Type*,�Source*,�
� Language*,�Relation*,�Coverage*,�Rights*,�
� resContext+,�resAggregation?,�resClass,�
� resLocation*)>�
<!ELEMENT�profElement�(elemId?,�elemName,�
� elemDesc,�elemType?,�elemUnit?,�elemEnumFlag*,�
� (elemValue*�|�(elemMinValue,�elemMaxValue)),�
� elemSynonym*,�elemObligation?,�
� elemMaxOccurrence?,�elemComment?)>�

The profAttributes section of the XML document contains
the attributes of the profile itself. The profId attribute
provides a system-wide unique identifier for a profile
instance and is currently being implemented as an OID. The
profTitle and profDesc attributes provide descriptions of the
profile where profTitle is more terse and appropriate for
more frequent display in user interfaces. The profType
attribute, defined further below, identifies the profile type.
The profDataDictId attribute provides the identifier of the
controlling domain data dictionary. The profChildId
attributes allow for the creation of a profile hierarchy.

The resAttributes section of the XML document generically
describes the resource using the 15 recommended elements
of the Dublin Core initiative. A description of this initiative
and the elements is available at http://purl.org/DC/. We’ve
added three additional resource attributes. The resContext

element identifies the application environment or discipline
within which the resource originates and is derived from a
taxonomy of science disciplines. For e xample,
NASA.PDS.Geoscience is used to indicate that the resource
is associated with the Geoscience node of the Planetary Data
System. The resLocation provides the location of the
resource, typically represented as a URL. Finally, the
resClass element identifies the resource within a taxonomy
of resource types. Examples values are
system.productServer, application.interface, data.granule
and data.dataSet.

The profile element section of the XML document describes
the data content that the resource manages using domain
specific metadata. For example, the Planetary Data System
(PDS) maintains an inventory of all science data sets that
have been archived in the system. Within this inventory, the
data sets are indexed on instrument and target body
identifiers involved in the observation. These elements
would be included in a profile’s element section as
illustrated below and indicate that this data set can resolve
queries that have PDS instrument and target identifiers as
query constraints.

As illustrated in the XML fragment below, each data
element is defined using the meta -attributes elemId,
elemName, and elemValue. These meta -attributes are
consistent with those in the OODT data element registry to
allow for reference and validation.

<profile>�
� <profAttributes>�
� � <profId>1.2.3.4...</profId>�
� � <profType>PROFILE</profType>�
� � <profStatusId>ACTIVE</profStatusId>�
� </profAttributes>�
� <resAttributes>�
� � <Identifier>1.2.3.5...</Identifer>�
� � <Title>Viking�Orbiter�1...</Title>�
� � <Format>text/html</Format>�
� � <Language>en</Language>�
� � <resContext>NASA.PDS</resContext>�
� � <resClass>data.dataset</resClass>�
� � <resLocation>http://pdscat...</resLocation>�
� </resAttributes>�
� <profElement>�
� � <elemId>1.2.3.6...</elemId>�
� � <elemName>INSTRUMENT_N...</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>VISUAL�IMAG...</elemValue>�
� </profElement>�
� <profElement>�
� � <elemId>1.2.3.7...</elemId>�
� � <elemName>TARGET_NAME</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>MARS</elemValue>�
� � <elemValue>PHOBOS</elemValue>�
� � <elemSynonym>ADS.OBJECT_ID</elemSynonym>�

� </profElement>�
</profile>�

The final phase of profile development involves
implementing instances of profiles for specific domain
resources. As is evident, the success of the distributed
resource location concept is dependent on the existence of
domain metadata captured in repositories such as data
(element) dictionaries. Within such privileged domains, the
registration of resources with the service is readily
accomplished by extracting the necessary metadata from the
domain’s metadata repository, creating the resource profile,
and then registering the profile with a profile server. This
enables the successful location of resources within a
domain.

Supporting interoperability between resources from
different domains is st rongly dependent on metadata
compatibility, or how well the metadata spans the domains.
For example, two related domains such as planetary science
and astrophysics both associate one or more target bodies
with most data products. However, unless the same
identifiers are used for a specific target or a mapping
between identifiers is determined, the attribute will not
support resource location much less interoperability across
the domains. In fact, as more sophisticated
interoperability—such as data transfo rmation and
correlation—are requested, deeper levels of metadata
compatibility will be required. For example, once a target
body is identified, sufficient metadata must be available for
coordinate system conversion.

The development of cross-discipline metadata is typically an
arduous manual effort performed by teams of domain
experts. However there are research efforts focusing on
automatic methods for identifying common metadata across
domains.

5. APPLICATION TO THE PLANETARY DATA

SYSTEM

The Planetary Data System (PDS) manages and archives
planetary science data for NASA’s Office of Space Science.
In existence since the late 1980s, the PDS developed—early
on—a standards architecture that included a formal
enterprise model, a means for collecting and associating
metadata with science data products, and a peer review
process for ensuring data and metadata validity. This active
science data archive currently has over five terabytes of data
stored and distributed on CD and DVD media. The
standards architecture has proven to be the single most
important element in maintaining consistency across the
various science domains represented in the planetary science
community and the six geographically distributed science
discipline nodes of the PDS.

The primary focus of the PDS to-date has been the creation
of a long-term science data archive on physical media. PDS
provides community access to the data products primarily

through the appropriate distributed science discipline node.
For example, the PDS imaging node is r esponsible for
imaging data products and builds search and retrieval
interfaces for specific data sets as requested by their users.
Similarly, other discipline nodes are responsible for the data
within their domain and build search and retrieval interfaces
as needed. The guiding philosophy was that scientists
working in the planetary science community would know
what node or interface could provide the data of interest.
This development approach resulted in heterogeneous
search and retrieval systems and as the number of data sets
increased, an exponential increase in the number of point-to-
point interfaces.

The advent of the Web, a huge increase in potential users,
and the large data volumes proposed for future solar system
explorations missions has re-focused attention on distributed
data management issues. These include a need for an
integrated view of all the data in the archive, an integrated
spatial/temporal access across the entire archive, and
infrastructure support for science analysis and knowledge
discovery.

In 1998, the PDS developed the prototype Distributed
Inventory System (DIS) to inventory the resources across
the PDS. This prototype took advantage of the wealth of
metadata in the archive to described both data and non-data
resources. The DIS described each resource in a label using
pertinent metadata from the archive. The DIS uses t he
Object Description Language (ODL), a keyword/value
language, to encode the metadata. URL/FTP links were
included for all online resources. The labels were collected
into a simple database. DIS engineers developed a simple
Perl CGI-script search engine to search the label database.
Results are provided as an HTML document for display in a
browser.

This prototype was a success and provided the PDS with
several lessons. First, it identified the PDS metadata as the
key to the integration problem since it was sufficient to
identify and describe both data and non -data resources,
provided the necessary search attributes for finding
resources, and was sufficient to determine whether a query
could be resolved by the resource. In addition the prototype
showed that the increase of point-to-point interfaces could
be reduced to a linear function. The prototype also made
certain limitations obvious. These were that ODL was not a
universal interchange language, resource heterogeneity was
still visible to the user, navigation and access was limited to
HTTP links, and node data system interoperability is not
supported.

In late 1999, PDS and OODT staff met to discuss the
applicability of OODT’s data management technology to
PDS issues and PDS’s information architectural concepts
(data modeling and metadata standards) to OODT goals.
One result of this collaboration is called the Next
Generation DIS. The goals of this new s ystem includes
adopting a common interchange language (XML), hiding

heterogeneity using encapsulation, using message passing
protocol in a component based system architecture,
maintaining system location independence, and providing a
scaleable and extensible solution. Figure 7 illustrates the
proposed system which will be prototyped using the Mars
Global Surveyor (MGS) science data archives.

Figure 5 - Next Generation DIS—Mars Global Surveyor
Prototype

OODT profiles will replace the ODL resource labels of the
initial DIS system. A portion of an OODT resource profile
for the Viking Mars Imaging Digital Image Model data set
(Mars Mosaic created using original Viking images) is
illustrated below. This profile provides sufficient
information for a query handler to determine whether the
data set could resolve an incoming query. In addition, this
profile could also be easily modified to describe a product
server that serves individual images by simply changing the
resource description since the metadata encoded in the
profile element section is applicable to both resources

<profile>�
� <profAttributes>�
� � <profId>1.3.6.1.4.1.1306.2.102</profId>�
� � <profType>PROFILE</profType>�
� </profAttributes>�
� <resAttributes>�
� � <Identifier>VO1/VO2-M-VIS-5-DIM-V1.0�
� � </Identifer>�
� � <Title>VO1/VO2_MARS_VISUAL</Title>�
� � <Format>text/html</Format>�
� � <resContext>NASA.PDS</resContext>�
� � <resClass>data.dataSet</resClass>�
� � <resLocation>http://pdsproto.jpl.nasa.gov...�
� � </resLocation>�
� </resAttributes>�
� <profElement>�
� � <elemName>TARGET_NAME</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>MARS</elemValue>�
� </profElement>�
� <profElement>�
� � <elemName>MAXIMUM_LATITUDE</elemName>�
� � <elemType>REAL</elemType>�

� � <elemMinValue>-87.50000</elemMinValue>�
� � <elemMaxValue>90.00000</elemMaxValue>�
� </profElement>�
</profile>�

The initial goal of the prototype will be to support the
creation of a data coverage plot as illustrated in Figure 6. In
this plot, indicators showing the geographical location of
MGS imaging (red), altimeter (blue), and thermal emission
spectrometer (green) data products are overlaid onto a Mars
image mosaic from the Viking Mars image data set. Four
data sets at several geographically distributed data systems
will be accessed to produce the plot.

Figure 6 - Mars Global Surveyor Coverage Plot

6. APPLICATION TO THE DEEP SPACE NETWORK

Established in 1958, NASA’s Deep Space Network (DSN)
is a global network of antennas that communicate with
spacecraft. The DSN facilitates interplanetary spacecraft
missions and several Earth-orbiting missions. It is currently
made up of three facilities across the world: at Goldstone, in
California's Mojave Desert; near Madrid, Spain; and near
Canberra, Australia3.

The DSN plays an integral role in the success of missions.
Amongst a few of its duties are: acquiring telemetry data
from spacecraft, transmitting commands to spacecraft,
gathering science data, and tracking spacecraft position and
velocity3. However, these tasks are hindered by the
distributed and heterogeneous nature of the DSN. These
obstacles complicate data sharing and mining, data
modeling, and the creation of a common information
architecture.

The OODT framework directly addresses the key issues of
the DSN. OODT’s emphasis on implementation of both a
component framework along with the identification of local
data dictionaries and models for each system provides an
excellent vehicle for establishing an information
architecture for the DSN. In addition, OODT’s design
principle of hiding local system interfaces through data
abstraction allows for the implementation of a common
information architecture. OODT allows for data elements

3 http://deepspace.jpl.nasa.gov/dsn/

tied to local information systems to be translated into
common data elements described for the entire DSN. Its
extensible architecture provides the DSN with what could
be considered “plug and play” data management. I n
addition, this architecture provides a means by which data
and local agents can be located, retrieved or executed on any
number of systems and machines using a common XML
exchange structure as defined in section 3. This distributed
computing model fits very nicely into the overall DSN
architecture.

As proof of concept, we created and launched a prototype
for the DSN. The first phase of this prototype involved
creating the “Mission and Ground Asset Database.” This
database provides a basic description of missions, ground
stations, spacecraft, and ground antennae. It was created to
provide an online reference of key mission parameters and
values and to provide a long term vision for tying together
capabilities of ground stations around the world. Figure 7
shows a high level entity/relationship diagram of the
database. This model will allow engineers to discover
possible constraints of the current ground systems and or
missions. In addition, the datab ase could be used to
understand how to optimize workflows in and around
ground stations.

Figure 7 - ER Diagram of Mission and Ground Asset
Database

The implementation of the database in conjunction with the
OODT architecture al lowed for the ground station
information captured to be published and exchanged over
the Internet using an XML interface. Not only is the
database now searchable with in the architecture, it can be
discovered by other systems by passing the XML structure
to the OODT system. OODT used a product server to query
and return the results of the database using the OODT XML
query definition. The product server was defined in a
profile which describes the missions and ground stations
that are maintained by the database. This allows for a query
of mission information to first locate a database which
contains the desired information. Looking forward, this will
allow for multiple databases to be tied together from
disparate ground asset databases around the world if a
standard XML structure can be defined for querying that
data. An excerpt of the XML structure from the profile can
be seen below.

<profile>�
� <profAttributes>�
� � <profId>1.3.6.1.4.1.1306.5.11</profId>�
���<profVersion>1.0</profVerision�
� � <profType>PROFILE</profType>�
� </profAttributes>�
� <resAttributes>�
� <Identifier>JPL.TMOD.PRODUCT_SERVER</Identifer>�
� � <Title>Mission�and�Ground�Asset�DB</Title>�
� � <Format>text/html</Format>�
� � <resContext>NASA.JPL.TMOD</resContext>�
� � <resClass>application.interface</resClass>�
� � <resLocation>http://velcro.jpl.nasa.gov...�
� � </resLocation>�
� </resAttributes>�
� <profElement>�
� � <elemName>MISSION_NAME</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>Cassini</elemValue>�
� � <elemValue>Galileo</elemValue>�
� </profElement>�
� <profElement>�
� � <elemName>GROUND_STATION_LOCATION</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>Goldstone</elemValue>�
� � <elemValue>Canberra</elemValue>�
� </profElement>�
</profile>�

JPL’s Interplanetary Network and Information Systems
Standards Program has initiated several efforts to explore
the use of XML as a means to establish common data
definition and access mechanisms for a reference mission
information architecture. This architecture is being worked
with support from the Consultative Committee on Space
Data Systems through an XML Working Group, and the
Object Management Group’s Space Domain Task Force.
The goal is to establish world -wide mechanisms for
exchanging mission information as well as supporting the
use of XML throughout the mission life cycle. OODT is
continuing to work on supporting this vision and is now
working to allow other databases to be queried using
OODT’s XML components. XML and OODT play a critical
role in helping both the DSN and other efforts from NASA
and other agencies establish architectures for the capture,
location, and exchange of critical mission information
across the boundaries of distributed and heterogeneous
systems.

7. FUTURE

We've realized the physical deployment of the current
OODT framework using CORBA as the network substrate.
CORBA's object model represents servers as interfaces with
methods, while clients call those methods. The logical
deployment, however, is different. It is a set of
interconnected peers that pass around a query object. Each
peer examines the query and may add any results that are
relevant. The query service, described in Section 3,
simulates this P2P architecture by crawling the network of

servers on behalf of the user and maintaining the query
object.

By replacing the CORBA substrate with a P2P substrate, we
can better leverage P2P features. For example, the query
service completely disappears because its role is redundant
in a P2P architecture. In P2P, there are no clients or servers,
just peers. Peers pu blish service advertisements that
describe the functions they can carry out. Profile peers
would publish advertisements for resource location services.
Product peers would publish advertisements for data
retrieval services. In this model, a user would “ inject” a
query into a system. Service advertisements would indicate
what peers would be capable of handling the query. Results
would come back to the user's peer asynchronously; and the
user can terminate the query as soon as s/he receives the
desired results.

Furthermore, a P2P substrate addresses scalability. In the
CORBA model, the query service must wait its turn when
running a query on behalf of a user at an overburdened
profile or product server. In the peer model, a popular data
center can be leveraged by providing more than one peer at
the center to handle requests. These peers may be located
on multiple CPUs and network interfaces to maximize
concurrency and availability. In essence, a system
administrator can speed up a site by starting more peers.

In addition, we are focusing on developing new components
in the architecture to manage metadata by creating a
metadata service. The purpose of the metadata service is to
provide a series of registries that allow for the management
of data dictionaries, data elements and resource descriptions.
This service will be designed around three major
capabilities: capturing data dictionary schemas, capturing
data elements and capturing resource definitions for data
systems, data sets, and data products. We see this as critical
to the validation of profiles for describing system resources.

OODT is also continuing to work across disciplines. We
are working with the National Institutes of Health to explore
the use of OODT for capturing and sharing research
produced in disparate research laboratories and are working
with JPL Institutional Computing and Information Services
program (ICIS) to explore infusion of data management
services and information architectures for describing,
building and operating distributed data systems at both the
institutional and project level.

The success of OODT has in many ways been driven by the
desire to share information. While there are many technical,
social and legal issues related to data sharing and
interoperability, the prospect of deriving new knowledge
through data correlation is immensely high. In addition,
providing standard data management frameworks for
building information management systems that can
dynamically plug into larger information management
systems is certainly a grand vision. One thing is clear:
science and engineering plan to continue to produce large

volumes of data that are orders of magnitude larger than
those already captured. The need to better capture,
organize, describe, reuse and share information within and
across disciplines will continue to be key information
management needs and research topics in the foreseeable
future.

8. REFERENCES

[1] Tim Bray et al. Extensible Markup Language (XML)
1.0 (Second Edition), Cambridge: World Wide Web
Consortium, 2000.

[2] Emelie Rutherford. “The P2P Report,” CIO Magazine,
January 2000.

[3] “White Paper: A National Virtual Observatory for
Data Exploration and Discovery,” October 1999.

[4] Li Gong. Project JXTA: A Technology Overview,
Palo Alto: Sun Microsystems, 2001.

[5] Erich Gamma et al. Design Patterns: Elements of
Reusable Object -Oriented Software , Reading:
Addison-Wesley, 1995.

[6] Object Management Group. The Common Object
Request Broker: Architecture and Specification ,
Needham: OMG, Inc., 2001.

[7] Grady Booch et al. The Unified Modeling Language
User Guide, Reading: Addison-Wesley, 1999.

[8] Ken Arnold, James Gosling, and David Holmes. The
Java Programming Language, Reading: Addison -
Wesley, 2000.

[9] J. Steven Hughes et al. “A Multi-Discipline Metadata
Registry for Science Interoperability,” Santa Fe: Open
Forum on Metadata Registries, ISO/IEC JTC1/SC32,
Data Management and Interchange, 2000.

[10] Tim Berners-Lee et al. “Uniform Resource Identifiers
(URI): Generic Syntax (RFC2396),” Reston: The
Internet Society, 1998.

[11] Xerox, Inc. DocuShare: Knowledge Sharing Software,
Rochester: Xerox, Inc., http://docushare.xerox.com/

[12] Y. Goland et al. “HTTP Extensions for Distributed
Authoring—WEBDAV (RFC2518),” Reston: The
Internet Society, 1999.

[13] Ned Freed and Nathaniel Borenstein. “Multipurpose
Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies (RFC2045),” Reston: The
Internet Society, 1996.

[14] Roy Fielding et al. “Hypertext Transfer Protocol —
HTTP/1.1 (RFC2616),” Reston: The Internet Society,
1999.

[15] Sun Microsystems. “Java Servlet Specification 2.3,”
Palo Alto: SMI, 2001.

[16] ISO/IEC 11179 - Specification and Standardization of
Data Elements, Parts 1 -6, ISO/IEC specification,
http://www.iso.ch/iso.

[17] Dublin Core Metadata Initiative. The Dublin Core
Element Set Version 1.1, Dublin: DMCI, July 1999.

[18] ITU-T. Information Technology —Abstract Syntax
Notation One (ASN.1): Specification of basic notation
(X.680), Geneva: International Telecommunications
Union, 1997.

9. ABOUT THE AUTHORS

Daniel Crichton is a Project Element Manager at JPL and
the principal investigator for the Object Oriented Data
Technology task where he is leading a research effort
developing distributed frameworks for integrating science
data management and archiving systems. He also currently
serves as the implementation manager and architect of a JPL
initiative to build an enterprise data architecture. His
interests are distributed architectures, enterprise and Internet
technologies, and database systems. He holds a B.S. and
M.S. in Computer Science. He can be reached at Daniel.
Crichton@jpl.nasa.gov.

Steven Hughes is a System Engineer at JPL and a Co -
Investigator for the Object Oriented Data Technology task.
He is currently the technical lead engineer for the Planetary
Data System and was instrumental in the development of the
planetary science metamodel. His interests are in
distributed architectures and the role of metadata in
interoperability. He holds a B.S. and M.S. in Computer
Science. He can be reached at Steven.Hughes@jpl.nasa.gov.

Sean Kelly is an Independent Consultant based in Silicon
Valley who provides expertise in object oriented software
engineering, distributed systems, Internet technologies, and
structured information. In addition to consulting for JPL, he
writes a regular column on XML technologies for Inside
XML Solutions. He holds a B.S. in Computer Science and a
B.S. in Technical Communication. He can be reached at
Sean.Kelly@jpl.nasa.gov.

Paul Ramirez is a Software Associate at JPL. He is
currently supporting integration of the Object Oriented Data
Technology task. His interests are in software architectures,
database systems, and web technologies. He holds a B.S. in
Computer Science from California Polytechnic University,
Pomona. He can be reached at Paul.Ramirez@jpl.nasa.gov.

COPYRIGHT

The work described was performed at the Jet Propulsion
Laboratory, California Institute of Technology under
contract with the National Aeronautics and Space
Administration.

